Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Nat Commun ; 15(1): 3041, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589412

RESUMO

Sugarcane is a vital crop with significant economic and industrial value. However, the cultivated sugarcane's ultra-complex genome still needs to be resolved due to its high ploidy and extensive recombination between the two subgenomes. Here, we generate a chromosomal-scale, haplotype-resolved genome assembly for a hybrid sugarcane cultivar ZZ1. This assembly contains 10.4 Gb genomic sequences and 68,509 annotated genes with defined alleles in two sub-genomes distributed in 99 original and 15 recombined chromosomes. RNA-seq data analysis shows that sugar accumulation-associated gene families have been primarily expanded from the ZZSO subgenome. However, genes responding to pokkah boeng disease susceptibility have been derived dominantly from the ZZSS subgenome. The region harboring the possible smut resistance genes has expanded significantly. Among them, the expansion of WAK and FLS2 families is proposed to have occurred during the breeding of ZZ1. Our findings provide insights into the complex genome of hybrid sugarcane cultivars and pave the way for future genomics and molecular breeding studies in sugarcane.


Assuntos
Saccharum , Saccharum/genética , Melhoramento Vegetal , Genômica , Haplótipos/genética , Cromossomos
2.
Chemistry ; 30(24): e202304287, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38380560

RESUMO

Aqueous zinc ion batteries have been extensively researched due to their distinctive advantages such as low cost and high safety. Vanadium oxides are important cathode materials, however, poor cycle life caused by vanadium dissolution limits their application. Recent studies show that the lattice NH4 + in vanadium oxides can act as a pillar to enhance structural stability and play a crucial role in improving its cycling stability. Nevertheless, there is still a lack of research on the effect of the lattice NH4 + content on structural evolution and electrochemical performance. Herein, we synthesize vanadium oxides with different contents of lattice NH4 + by a one-step hydrothermal reaction. The vanadium oxides with lattice NH4 + exhibit high initial capacity, as well as good cycling stability and rate performance compared to bare vanadium oxide. Combined with electrochemical analyses, ex-situ structural characterizations, and in-situ X-ray diffraction tests, we reveal that the lattice NH4 + content plays a positive role in vanadium oxides' structural stability and cation diffusion kinetics. This work presents a direction for designing high-performance vanadium cathodes for aqueous zinc ion batteries.

3.
JAMA Cardiol ; 9(3): 233-242, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38198131

RESUMO

Importance: The genetic basis of coronary heart disease (CHD) has expanded from a germline to somatic genome, including clonal hematopoiesis of indeterminate potential (CHIP). How CHIP confers CHD risk in East Asian individuals, especially those with small clones (variant allele fraction [VAF] 0.5%-2%) and different genetic backgrounds, was completely unknown. Objective: To investigate the CHIP profile in a general Chinese cohort by deep sequencing and further explore the association between CHIP and incident CHD considering germline predisposition. Design, Setting, and Participants: This cohort study used data from 3 prospective cohorts in the project Prediction for Atherosclerotic Cardiovascular Disease Risk in China. Participants without cardiovascular disease or cancer at baseline were enrolled in 2001 and 2008 and had a median follow-up of 12.17 years extending into 2021. Exposures: CHIP mutations were detected by targeted sequencing (mean depth, 916×). A predefined CHD polygenic risk score (PRS) comprising 531 variants was used to evaluate germline predisposition. Main Outcomes and Measures: The main outcome was first incident CHD. Results: Among 6181 participants, the median (IQR) age was 53.83 years (45.35-62.39 years); 3082 participants (49.9%) were female, and 3099 (50.1%) were male. A total of 1100 individuals (17.80%) harbored 1372 CHIP mutations at baseline. CHIP was independently associated with incident CHD (hazard ratio [HR], 1.42; 95% CI, 1.18-1.72; P = 2.82 × 10-4) and presented a risk gradient with increasing VAF (P = 3.98 × 10-3 for trend). Notably, individuals with small clones, nearly half of CHIP carriers, also demonstrated a higher CHD risk compared with non-CHIP carriers (HR, 1.33; 95% CI, 1.02-1.74; P = .03) and were 4 years younger than those with VAF of 2% or greater (median age, 58.52 vs 62.70 years). Heightened CHD risk was not observed among CHIP carriers with low PRS (HR, 1.02; 95% CI, 0.64-1.64; P = .92), while high PRS and CHIP jointly contributed a 2.23-fold increase in risk (95% CI, 1.51-3.29; P = 6.29 × 10-5) compared with non-CHIP carriers with low PRS. Interestingly, the diversity in CHIP-related CHD risk within each PRS group was substantially diminished when removing variants in the inflammatory pathway from the PRS. Conclusions: This study revealed that elevated CHD risk attributed to CHIP was nonnegligible even for small clones. Inflammation genes involved in CHD could aggravate or abrogate CHIP-related CHD risk.


Assuntos
Doenças Cardiovasculares , Doença da Artéria Coronariana , Masculino , Humanos , Feminino , Pessoa de Meia-Idade , Doença da Artéria Coronariana/epidemiologia , Hematopoiese Clonal , Estudos de Coortes , Estudos Prospectivos , Células Germinativas
4.
Am J Clin Nutr ; 118(4): 773-781, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37793743

RESUMO

BACKGROUND: Remarkable heterogeneity has been observed among population-based studies on egg consumption and risk of coronary artery disease (CAD). Whether genetic susceptibility serves as a potential explanation for this inconsistency remains unknown. OBJECTIVES: We performed a prospective cohort study to investigate the association of egg consumption with incident CAD at different genetic susceptibilities. METHODS: We included 34,111 participants without CAD at baseline from the project of Prediction for Atherosclerotic Cardiovascular Disease Risk in China. Egg consumption was assessed with food frequency questionnaires. Genetic susceptibility was quantified by a predefined polygenic risk score (PRS) with 540 genetic variants. The hazard ratio (HR) and 95% confidence interval (95% CI) of incident CAD associated with egg consumption and PRS were estimated using the Cox proportional hazards models. RESULTS: Over a median 11.7 y of follow-up, 1,128 incident cases of CAD were recorded. Both higher egg consumption and increased PRS were related to higher risk of CAD. When stratified by genetic risk, each increment of 3 eggs/wk was associated with a 5% higher risk of CAD for participants at low to intermediate genetic risk (HR: 1.05; 95% CI: 1.01, 1.09), whereas risk increased to HR 1.10 (95% CI: 1.05, 1.16) for those at high genetic risk; a significant synergistic interaction was also indicated at both multiplicative (Pinteraction = 0.007) and additive (relative excess risk: 0.73; 95% CI: 0.24, 1.22) scales. When the joint effect was examined, in comparison with those at low to intermediate genetic risk and consuming <1 egg/wk, the HR (95% CI) was 2.95 (2.41, 3.62) for participants with high genetic risk and consumption of ≥10 eggs/wk, and the corresponding standardized 10-y CAD rates increased from 1.37% to 4.24%. CONCLUSIONS: Genetic predisposition may synergistically interact with egg consumption in relation to increased CAD risk. PRS-stratified recommendations on egg consumption may help formulate personalized nutrition policies.


Assuntos
Doença da Artéria Coronariana , Humanos , Doença da Artéria Coronariana/epidemiologia , Doença da Artéria Coronariana/genética , Predisposição Genética para Doença , Estudos Prospectivos , Fatores de Risco , China
5.
Plant Methods ; 19(1): 101, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770966

RESUMO

BACKGROUND: Sugarcane (Saccharum spp.) is the core crop for sugar and bioethanol production over the world. A major problem in sugarcane production is stalk lodging due to weak mechanical strength. Rind penetrometer resistance (RPR) and breaking force are two kinds of regular parameters for mechanical strength characterization. However, due to the lack of efficient methods for determining RPR and breaking force in sugarcane, genetic approaches for improving these traits are generally limited. This study was designed to use near-infrared spectroscopy (NIRS) calibration assay to accurately assess mechanical strength on a high-throughput basis for the first time. RESULTS: Based on well-established laboratory measurements of sugarcane stalk internodes collected in the years 2019 and 2020, considerable variations in RPR and breaking force were observed in the stalk internodes. Following a standard NIRS calibration process, two online models were obtained with a high coefficient of determination (R2) and the ratio of prediction to deviation (RPD) values during calibration, internal cross-validation, and external validation. Remarkably, the equation for RPR exhibited R2 and RPD values as high as 0.997 and 17.70, as well as showing relatively low root mean square error values at 0.44 N mm-2 during global modeling, demonstrating excellent predictive performance. CONCLUSIONS: This study delivered a successful attempt for rapid and precise prediction of rind penetrometer resistance and breaking force in sugarcane stalk by NIRS assay. These established models can be used to improve phenotyping jobs for sugarcane germplasm on a large scale.

6.
Front Plant Sci ; 14: 1224268, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37546250

RESUMO

Sugarcane is a major industrial crop around the world. Lodging due to weak mechanical strength is one of the main problems leading to huge yield losses in sugarcane. However, due to the lack of high efficiency phenotyping methods for stalk mechanical strength characterization, genetic approaches for lodging-resistant improvement are severely restricted. This study attempted to apply near-infrared spectroscopy high-throughput assays for the first time to estimate the crushing strength of sugarcane stalks. A total of 335 sugarcane samples with huge variation in stalk crushing strength were collected for online NIRS modeling. A comprehensive analysis demonstrated that the calibration and validation sets were comparable. By applying a modified partial least squares method, we obtained high-performance equations that had large coefficients of determination (R2 > 0.80) and high ratio performance deviations (RPD > 2.4). Particularly, when the calibration and external validation sets combined for an integrative modeling, we obtained the final equation with a coefficient of determination (R2) and ratio performance deviation (RPD) above 0.9 and 3.0, respectively, demonstrating excellent prediction capacity. Additionally, the obtained model was applied for characterization of stalk crushing strength in large-scale sugarcane germplasm. In a three-year study, the genetic characteristics of stalk crushing strength were found to remain stable, and the optimal sugarcane genotypes were screened out consistently. In conclusion, this study offers a feasible option for a high-throughput analysis of sugarcane mechanical strength, which can be used for the breeding of lodging resistant sugarcane and beyond.

7.
Opt Lett ; 48(6): 1518-1521, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36946967

RESUMO

Two-photon excitation fluorescence (TPEF) microscopy has evolved into a versatile tool in biological research. However, the multiplexing capability of TPEF microscopy is limited by the narrow spectral bandwidth of the light source. In this study, we apply a photonic crystal fiber in TPEF microscopy to broaden the excitation source bandwidth. We tuned the spectral window using a spatial light modulator as a programmable diffraction grating that was placed behind a prism pair. In addition, we combined a grating pair to compensate for dispersion to improve the two-photon excitation efficiency. The combination of a broad spectrum and a programmable grating enabled fast spectral window tuning rate on a time scale of tens of milliseconds. We demonstrate the performance of our method by imaging live B16 cells labeled with four emission spectrum overlapped fluorescent proteins.

8.
Front Microbiol ; 13: 1042007, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36578578

RESUMO

The area around Poyang Lake is the main aquaculture area in Jiangxi Province, China, and an important base for the supply of freshwater aquatic products. Aquaculture in the Poyang Lake area is severely threatened by diseases caused by bacterial pathogens, and Aeromonas veronii has been the main pathogen in recent years. In this paper, ERIC-PCR genotyping, virulence gene and antimicrobial resistance gene detection, and drug susceptibility tests were carried out on 46 A. veronii isolates obtained from aquaculture systems in the Poyang Lake area from 2016 to 2020. The results showed that the A. veronii strains in the Poyang Lake area had high genetic diversity, and 46 strains produced 36 ERIC genotypes. There were no geographical and temporal differences in the cluster analysis results and no dominant clones. All 13 virulence genes tested were detected, and all isolates had harbored 2 or more virulence genes, with a maximum of 12 virulence genes detected. Among the 22 antimicrobial resistance genes selected, 15 were detected; 97.8% of the isolates contained 2 or more antimicrobial resistance genes, with a maximum of 9 antimicrobial resistance genes. Drug susceptibility tests showed that some strains were resistant to a variety of traditionally effective drugs for Aeromomas, such as enrofloxacin and florfenicol. This study provides a reference for exploring the impact of aquaculture in the Poyang Lake area on public health.

9.
Adv Sci (Weinh) ; 9(27): e2202194, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35882627

RESUMO

Despite the high energy density of O3-type layered cathode materials, the short cycle life in aqueous electrolyte hinders their practical applications in aqueous lithium-ion batteries (ALIBs). In this work, it is demonstrated that the structural stability of layered LiCoO2 in aqueous electrolyte can be remarkably improved by altering the oxygen stacking from O3 to O2. As compared to the O3-type LiCoO2 , the O2-type LiCoO2 exhibits significantly improved cycle performance in neutral aqueous electrolyte. It is found that the structural degradation caused by electrophilic attack of proton can be effectively mitigated in O2-type layered structure. With O2 stacking, CoO6 octahedra in LiCoO2 possess stronger CoO bonds while Co migration from Co layer to Li layer is strongly hampered, resulting in enhanced structural stability against proton attack and prolonged cycle life in aqueous electrolyte. The findings in this work reveal that regulating oxygen stacking sequence is an effective strategy to improve the structural stability of layered materials for ALIBs.

10.
Adv Mater ; 34(13): e2108541, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35040212

RESUMO

Aqueous lithium-ion batteries (ALIBs) with nonflammable feature attract great attention for large-scale energy storage. However, the layered cathode materials (such as LiCoO2 ) present serious capacity decay in ALIBs. The degradation mechanism of layered cathode materials in ALIBs is still not clear and an effective strategy to improve cycling stability remains a great challenge. In this work, the authors use LiCoO2 as a typical example to investigate its structural degradation in aqueous electrolytes. It is found that H+ insertion accelerated irreversible layered-to-spinel phase transition is the main reason causing structural degradation and fast capacity fading in LiCoO2 . Subsequently, Li-excess Li1+ t Co1- t O2- t with intermediate spin Co3+ is developed to mitigate H+ influence and the adverse phase transition in aqueous electrolyte. It is interesting to discover that reversible water intercalation/deintercalation occurs in the layered structure during charge/discharge, which effectively suppresses the layered-to-spinel phase transition with cycling. Benefiting from the stabilized layered structure, the Li-excess Li1.08 Co0.92 O1.92 shows a significantly improved cycling performance in the neutral aqueous electrolyte with a large specific capacity and excellent rate capability. This work provides a promising structural regulation strategy for the layered cathode materials, enabling their potential application in ALIBs.

11.
Plant Methods ; 17(1): 76, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34256789

RESUMO

BACKGROUND: Sugarcane (Saccharum officinarum L.) is an economically important crop with stalks as the harvest organs. Improvement in stalk quality is deemed a promising strategy for enhancing sugarcane production. However, the lack of efficient approaches for systematic evaluation of sugarcane germplasm largely limits improvements in stalk quality. This study is designed to develop a systematic near-infrared spectroscopy (NIRS) assay for high-throughput phenotyping of sugarcane stalk quality, thereby providing a feasible solution for precise evaluation of sugarcane germplasm. RESULTS: A total of 628 sugarcane accessions harvested at different growth stages before and after maturity were employed to take a high-throughput assay to determine sugarcane stalk quality. Based on high-performance anion chromatography (HPAEC-PAD), large variations in sugarcane stalk quality were detected in terms of biomass composition and the corresponding fundamental ratios. Online and offline NIRS modeling strategies were applied for multiple purpose calibration with partial least square (PLS) regression analysis. Consequently, 25 equations were generated with excellent determination coefficients (R2) and ratio performance deviation (RPD) values. Notably, for some observations, RPD values as high as 6.3 were observed, which indicated their exceptional performance and predictive capability. CONCLUSIONS: This study provides a feasible method for consistent and high-throughput assessment of stalk quality in terms of moisture, soluble sugar, insoluble residue and the corresponding fundamental ratios. The proposed method permits large-scale screening of optimal sugarcane germplasm for sugarcane stalk quality breeding and beyond.

12.
Biotechnol Biofuels ; 14(1): 152, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215313

RESUMO

BACKGROUND: Sugarcane is an essential crop for sugar and ethanol production. Immediate processing of sugarcane is necessary after harvested because of rapid sucrose losses and deterioration of stalks. This study was conducted to fill the knowledge gap regarding the exploration of fungal communities in harvested deteriorating sugarcane. Experiments were performed on simulating production at 30 °C and 40 °C after 0, 12, and 60 h of sugarcane harvesting and powder-processing. RESULTS: Both pH and sucrose content declined significantly within 12 h. Fungal taxa were unraveled using ITS amplicon sequencing. With the increasing temperature, the diversity of the fungal community decreased over time. The fungal community structure significantly changed within 12 h of bagasse storage. Before stored, the dominant genus (species) in bagasse was Wickerhamomyces (W. anomalus). Following storage, Kazachstania (K. humilis) and Saccharomyces (S. cerevisiae) gradually grew, becoming abundant fungi at 30 °C and 40 °C. The bagasse at different temperatures had a similar pattern after storage for the same intervals, indicating that the temperature was the primary cause for the variation of core features. Moreover, most of the top fungal genera were significantly correlated with environmental factors (pH and sucrose of sugarcane, storage time, and temperature). In addition, the impact of dominant fungal species isolated from the deteriorating sugarcane on sucrose content and pH in the stored sugarcane juice was verified. CONCLUSIONS: The study highlighted the importance of timeliness to refine sugar as soon as possible after harvesting the sugarcane. The lessons learned from this research are vital for sugarcane growers and the sugar industry for minimizing post-harvest losses.

13.
Biotechnol Biofuels ; 14(1): 144, 2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34174936

RESUMO

BACKGROUND: Identifying lignocellulose recalcitrant factors and exploring their genetic properties are essential for enhanced biomass enzymatic saccharification in bioenergy crops. Despite genetic modification of major wall polymers has been implemented for reduced recalcitrance in engineered crops, it could most cause a penalty of plant growth and biomass yield. Alternatively, it is increasingly considered to improve minor wall components, but an applicable approach is required for efficient assay of large population of biomass samples. Hence, this study collected total of 100 rice straw samples and characterized all minor wall monosaccharides and biomass enzymatic saccharification by integrating NIRS modeling and QTL profiling. RESULTS: By performing classic chemical analyses and establishing optimal NIRS equations, this study examined four minor wall monosaccharides and major wall polymers (acid-soluble lignin/ASL, acid-insoluble lignin/AIL, three lignin monomers, crystalline cellulose), which led to largely varied hexoses yields achieved from enzymatic hydrolyses after two alkali pretreatments were conducted with large population of rice straws. Correlation analyses indicated that mannose and galactose can play a contrast role for biomass enzymatic saccharification at P < 0.0 l level (n = 100). Meanwhile, we found that the QTLs controlling mannose, galactose, lignin-related traits, and biomass saccharification were co-located. By combining NIRS assay with QTLs maps, this study further interpreted that the mannose-rich hemicellulose may assist AIL disassociation for enhanced biomass enzymatic saccharification, whereas the galactose-rich polysaccharides should be effectively extracted with ASL from the alkali pretreatment for condensed AIL association with cellulose microfibrils. CONCLUSIONS: By integrating NIRS assay with QTL profiling for large population of rice straw samples, this study has identified that the mannose content of wall polysaccharides could positively affect biomass enzymatic saccharification, while the galactose had a significantly negative impact. It has also sorted out that two minor monosaccharides could distinctively associate with lignin deposition for wall network construction. Hence, this study demonstrates an applicable approach for fast assessments of minor lignocellulose recalcitrant factors and biomass enzymatic saccharification in rice, providing a potential strategy for bioenergy crop breeding and biomass processing.

14.
Biotechnol Biofuels ; 14(1): 123, 2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34051834

RESUMO

BACKGROUND: Sugarcane is one of the most crucial energy crops that produces high yields of sugar and lignocellulose. The cellulose crystallinity index (CrI) and lignin are the two kinds of key cell wall features that account for lignocellulose saccharification. Therefore, high-throughput screening of sugarcane germplasm with excellent cell wall features is considered a promising strategy to enhance bagasse digestibility. Recently, there has been research to explore near-infrared spectroscopy (NIRS) assays for the characterization of the corresponding wall features. However, due to the technical barriers of the offline strategy, it is difficult to apply for high-throughput real-time analyses. This study was therefore initiated to develop a high-throughput online NIRS assay to rapidly detect cellulose crystallinity, lignin content, and their related proportions in sugarcane, aiming to provide an efficient and feasible method for sugarcane cell wall feature evaluation. RESULTS: A total of 838 different sugarcane genotypes were collected at different growth stages during 2018 and 2019. A continuous variation distribution of the near-infrared spectrum was observed among these collections. Due to the very large diversity of CrI and lignin contents detected in the collected sugarcane samples, seven high-quality calibration models were developed through online NIRS calibration. All of the generated equations displayed coefficient of determination (R2) values greater than 0.8 and high ratio performance deviation (RPD) values of over 2.0 in calibration, internal cross-validation, and external validation. Remarkably, the equations for CrI and total lignin content exhibited RPD values as high as 2.56 and 2.55, respectively, indicating their excellent prediction capacity. An offline NIRS assay was also performed. Comparable calibration was observed between the offline and online NIRS analyses, suggesting that both strategies would be applicable to estimate cell wall characteristics. Nevertheless, as online NIRS assays offer tremendous advantages for large-scale real-time screening applications, it could be implied that they are a better option for high-throughput cell wall feature prediction. CONCLUSIONS: This study, as an initial attempt, explored an online NIRS assay for the high-throughput assessment of key cell wall features in terms of CrI, lignin content, and their proportion in sugarcane. Consistent and precise calibration results were obtained with NIRS modeling, insinuating this strategy as a reliable approach for the large-scale screening of promising sugarcane germplasm for cell wall structure improvement and beyond.

15.
Carbohydr Polym ; 232: 115448, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31952577

RESUMO

Genetic modification of plant cell walls is an effective approach to reduce lignocellulose recalcitrance in biofuel production, but it may affect plant stress response. Hence, it remains a challenge to reduce biomass recalcitrance and simultaneously enhance stress resistance. In this study, the OsSUS3-transgenic plants exhibited increased cell wall polysaccharides deposition and reduced cellulose crystallinity and xylose/arabinose proportion of hemicellulose, resulting in largely enhanced biomass saccharification and bioethanol production. Additionally, strengthening of the cell wall also contributed to plant biotic resistance. Notably, the transgenic plants increased stress-induced callose accumulation, and promoted the activation of innate immunity, leading to greatly improved multiple resistances to the most destructive diseases and a major pest. Hence, this study demonstrates a significant improvement both in bioethanol production and biotic stress resistance by regulating dynamic carbon partitioning for cellulose and callose biosynthesis in OsSUS3-transgenic plants. Meanwhile, it also provides a potential strategy for plant cell wall modification.

16.
J Fluoresc ; 29(5): 1133-1141, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31399831

RESUMO

A simple and fast vortex-assisted liquid-liquid microextraction (VA-LLME) combining with fluorescent carbon dots have been developed for the determination 4-nitrophenol (4-NP). The high fluorescent quantum yield (58.9%) fluorine doped carbon dots (F-CDs) were synthesized using tetrafluoroterephthalic acid as a fluorine source and using citric acid as a fluorine source and using ethylenediamine as a nitrogen source via a one-step hydrothermal method. F-CDs fluorescence was effectively quenched by 4-NP due to inner filter effect (IFE) and the strong interactions between functional groups (-COOH,-OH, -NH2 and -F groups) of the F-CDs and 4-NP. In VALLME method, n-octanol was employed as extraction solvent, and vortex-mix was exploited as a gentle mix method to reduce emulsification time and improve the extraction efficiency. The detection limits, the quantification limit and relative standard deviation for the 4-NP were found as 15 nM, 50 nM and 3.5%, respectively. Moreover, the obtained F-CDs can be employed as fluorescent probe to detect 4-NP in real environmental water samples.


Assuntos
Carbono/química , Flúor/química , Microextração em Fase Líquida , Nitrofenóis/análise , Pontos Quânticos/química , Fluorometria , Poluentes Químicos da Água/química
17.
Biotechnol Biofuels ; 12: 99, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31057665

RESUMO

BACKGROUND: Miscanthus is a leading bioenergy crop with enormous lignocellulose production potential for biofuels and chemicals. However, lignocellulose recalcitrance leads to biomass process difficulty for an efficient bioethanol production. Hence, it becomes essential to identify the integrative impact of lignocellulose recalcitrant factors on cellulose accessibility for biomass enzymatic hydrolysis. In this study, we analyzed four typical pairs of Miscanthus accessions that showed distinct cell wall compositions and sorted out three major factors that affected biomass saccharification for maximum bioethanol production. RESULTS: Among the three optimal (i.e., liquid hot water, H2SO4 and NaOH) pretreatments performed, mild alkali pretreatment (4% NaOH at 50 °C) led to almost complete biomass saccharification when 1% Tween-80 was co-supplied into enzymatic hydrolysis in the desirable Miscanthus accessions. Consequently, the highest bioethanol yields were obtained at 19% (% dry matter) from yeast fermentation, with much higher sugar-ethanol conversion rates by 94-98%, compared to the other Miscanthus species subjected to stronger pretreatments as reported in previous studies. By comparison, three optimized pretreatments distinctively extracted wall polymers and specifically altered polymer features and inter-linkage styles, but the alkali pretreatment caused much increased biomass porosity than that of the other pretreatments. Based on integrative analyses, excellent equations were generated to precisely estimate hexoses and ethanol yields under various pretreatments and a hypothetical model was proposed to outline an integrative impact on biomass saccharification and bioethanol production subjective to a predominate factor (CR stain) of biomass porosity and four additional minor factors (DY stain, cellulose DP, hemicellulose X/A, lignin G-monomer). CONCLUSION: Using four pairs of Miscanthus samples with distinct cell wall composition and varied biomass saccharification, this study has determined three main factors of lignocellulose recalcitrance that could be significantly reduced for much-increased biomass porosity upon optimal pretreatments. It has also established a novel standard that should be applicable to judge any types of biomass process technology for high biofuel production in distinct lignocellulose substrates. Hence, this study provides a potential strategy for precise genetic modification of lignocellulose in all bioenergy crops.

18.
Biotechnol Biofuels ; 12: 11, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30636971

RESUMO

BACKGROUND: Genetic modification of plant cell walls has been implemented to reduce lignocellulosic recalcitrance for biofuel production. Plant glycoside hydrolase family 9 (GH9) comprises endo-ß-1,4-glucanase in plants. Few studies have examined the roles of GH9 in cell wall modification. In this study, we independently overexpressed two genes from GH9B subclasses (OsGH9B1 and OsGH9B3) and examined cell wall features and biomass saccharification in transgenic rice plants. RESULTS: Compared with the wild type (WT, Nipponbare), the OsGH9B1 and OsGH9B3 transgenic rice plants, respectively, contained much higher OsGH9B1 and OsGH9B3 protein levels and both proteins were observed in situ with nonspecific distribution in the plant cells. The transgenic lines exhibited significantly increased cellulase activity in vitro than the WT. The OsGH9B1 and OsGH9B3 transgenic plants showed a slight alteration in three wall polymer compositions (cellulose, hemicelluloses, and lignin), in their stem mechanical strength and biomass yield, but were significantly decreased in the cellulose degree of polymerization (DP) and lignocellulose crystalline index (CrI) by 21-22%. Notably, the crude cellulose substrates of the transgenic lines were more efficiently digested by cellobiohydrolase (CBHI) than those of the WT, indicating the significantly increased amounts of reducing ends of ß-1,4-glucans in cellulose microfibrils. Finally, the engineered lines generated high sugar yields after mild alkali pretreatments and subsequent enzymatic hydrolysis, resulting in the high bioethanol yields obtained at 22.5% of dry matter. CONCLUSIONS: Overproduction of OsGH9B1/B3 enzymes should have specific activity in the postmodification of cellulose microfibrils. The increased reducing ends of ß-1,4-glucan chains for reduced cellulose DP and CrI positively affected biomass enzymatic saccharification. Our results demonstrate a potential strategy for genetic modification of cellulose microfibrils in bioenergy crops.

19.
Spectrochim Acta A Mol Biomol Spectrosc ; 212: 286-292, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30660836

RESUMO

A simple and fast spectrofluorimetric method coupled with fluorescent carbon quantum dots have been developed for the detection and speciation chromium(VI) and chromium(III). The high fluorescence quantum yield (QY: 20.5%) carbon quantum dots (CQDs) were synthesized from natural kelp by hydrothermal method. The fluorescence of CQDs was effectively quenched by Cr(VI) due to inner filter effect (IFE) and the strong interactions between the functional groups on the CQDs surface and Cr(VI). Cr(III) species after oxidation of this species to Cr(VI) using KMnO4 as the oxidant were also detected by the proposed method. Under optimal conditions, the Cr(VI) could be detected with the range from 0.01 to 50 µM and a limit of detection 0.52 µM. And the synthesized CQDs were utilized as fluorescent probe to determinate Cr(III) and Cr(VI) in environmental water samples with satisfactory recoveries in the range of 94%-107%.

20.
Chimia (Aarau) ; 72(7): 514-517, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30158015

RESUMO

Mesoporous silica SBA-15 is shown to be a very efficient alternative to phase transfer catalyst salts for two-phase nucleophilic substitutions. The two-phase reaction can efficiently take place in the absence of PTCs. The high catalytic activity and reaction rates can be attributed to the amphiphilic and negatively charged surface of SBA-15 as well as the rapid ingress of the reactants and egress of the products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...